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Abstract—This paper proposes a game-theoretic approach to
analyze the interactions between an attacker and a defender in
a cyber-physical system (CPS) and develops effective defense
strategies. In a CPS, the attacker launches cyber attacks on
a number of nodes in the cyber layer, trying to maximize the
potential damage to the underlying physical system while the
system operator seeks to defend several nodes in the cyber layer
to minimize the physical damage. Given that CPS attacking and
defending is often a continual process, a zero-sum Markov game
is proposed in this paper to model these interactions subject
to underlying uncertainties of real-world events and actions. A
novel model is also proposed in this paper to characterize the
interdependence between the cyber layer and the physical layer in
a CPS and quantify the impact of the cyber attack on the physical
damage in the proposed game. To find the Nash equilibrium of
the Markov game, we design an efficient algorithm based on
value iteration. The proposed general approach is then applied
to study the wide-area monitoring and protection issue in smart
grid. Extensive simulations are conducted based on real-world
data, and results show the effectiveness of the defending strategies
derived from the proposed approach.

I. INTRODUCTION

Cyber-physical systems (CPSs) are engineered systems that
are built from, and depend upon, the seamless integration
of computational algorithms and distributed physical compo-
nents. They are expected to drive innovation and competition
in sectors such as agriculture, energy, transportation, building
design and automation, healthcare, and manufacturing. How-
ever, CPSs are subject to threats due to their increasing reliance
on information and communication technologies. Recent real-
world events [1], [2] have clearly demonstrated the vulnerabil-
ity of a CPS to various malicious attacks and the destructive
effects that such attacks can have in practice. Therefore, it
is imperative for us to ensure the security of current and
emerging CPSs.

Given its great importance, CPS security has attracted in-
creasing attention recently. Some general frameworks to model
and analyze CPS security have been proposed in [3], [4], [5],
[6]. The CPS operational objectives under potential security
threats are characterized in [3]. Pasqualetti et al. [4] propose a
mathematical framework to detect and identify various attacks
in a CPS. A hierarchical architecture for CPS security is
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developed in [5] to design a cross-layer security solution. In
[6], resilient control schemes are developed to mitigate the
impact of denial-of-service (DoS) attacks for a control system.
All of these work are from a control perspective and consider
a general CPS, which can be applied to several applications
including smart grid. There also exist several studies that
solely focus on smart grid security. In particular, false data
injection attack in smart grid [7], [8], [9] has been studied
extensively. Surveys about smart grid security can be found in
[10], [11]. Although these work provide interesting insights
to CPS and smart grid security, few of them consider the
strategic interactions between attackers and defenders in CPSs.
In a CPS, the attacker often tries to maximize the potential
damage to the system while the defender seeks to minimize
the damage. Therefore, the actions and objectives of attackers
and defenders in a CPS are closely related, which makes
the consideration of their strategic interactions necessary and
motivates a game-theoretic approach.

Game theory has been applied to study CPS security (see
[12] for a recent survey on related work). However, there are
two aspects that are often ignored in existing literature. First,
CPS attacking and protecting is a continual process, where at-
tackers and defenders continue to interact to produce dynamic
states that reflect their respective best actions. Second, there is
an interdependence between the cyber layer and the physical
layer in a CPS, which means that the cyber attackers could
propagate to the physical layer and cause physical damage.
However, none of the existing work [13], [14], [15], [16]
on applying game theory to CPS or smart grid security fully
address both of these aspects.

In this paper, we propose a game-theoretic approach to
analyze the interactions between an attacker and a defender
in a CPS and develop effective defense strategies. Given a
general CPS model, the CPS security problem is formulated
as a zero-sum Markov game between the attacker and defender
that are continually interacting in the cyber layer of the CPS.
In this game, the attacker launches cyber attackers against
a set of nodes in the cyber layer of the CPS and aims to
maximize the potential physical damage to the underlying
physical system. On the other hand, the defender selects a set
of nodes in the cyber layer to protect such that the physical
damage to the underlying physical system is minimized. The
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Fig. 1. A cyber-physical system model.

impact of cyber attacks on the underlying physical system
of a CPS is characterized by a conditional probability that
indicates the failure probability of a physical node when a
cyber node has been attacked successfully. The system state
will evolve based on the actions made by both the attacker and
defender as well as the underlying uncertainties of real-world
events. We then propose an algorithm to solve the proposed
Markov game and, as a case study, apply it to the wide-area
monitoring and protection problem in smart grid. In summary,
the contributions of this paper are as follows:
• We develop a novel framework to analyze the attacker-

defender interactions of a general CPS and propose a
Markov game to model it considering the continual nature
of the interactions.

• We design an algorithm based on value iteration to find
the Nash equilibrium of the proposed Markov game and
derive the optimal defending strategy under an intelligent
attacker.

• We apply our general framework to a wide-area monitor-
ing and protection scenario in smart grid. Experimental
results verify the effectiveness of our proposed approach.

The rest of the paper is organized as follows. Section II
describes our general CPS security model and the proposed
Markov game. Section III presents the designed algorithm
to compute the Nash equilibrium of the proposed game.
Experimental results are discussed in Section IV based on
a real-world power system, and the conclusion is made in
Section V.

II. SYSTEM MODELING AND PROBLEM FORMULATION

Consider a cyber-physical system consisting of n nodes
in the cyber layer and m nodes in the physical layer as
shown in Fig. 1. The cyber layer and the physical layer are
interconnected, and security breaches can propagate from the
cyber layer to the physical layer. Both the defender and the
attacker operate on the cyber layer of the system and care
about the effect on the physical layer. In the following, we
first describe the game model and then illustrate how the
interdependence between cyber layer and physical layer can
be incorporated in the proposed game model.

A. Game Formulation
We define our Markov game as follows. There are two

players in the game: a defender and an attacker. For the

defender, its action d := {d1, . . . , dn} is the cyber nodes that
it chooses to defend, where di is equal to 1 if node i is chosen
or 0 otherwise. For the attacker, its action a := {a1, . . . , an}
is the cyber nodes that it chooses to attack, where ai is equal
to 1 if node i is chosen or 0 otherwise. Both players have
limited budget such that in each time slot, the attacker can
choose a limited number of cyber nodes na to attack, and the
defender can choose a limited number of cyber nodes nd to
defend. Therefore, the action sets of the defender D and the
attacker A are defined as

D :=

{
d |

n∑
i=1

di ≤ nd, di ∈ {0, 1}, i = 1, . . . , n.

}
, (1)

A :=

{
a |

n∑
i=1

ai ≤ na, ai ∈ {0, 1}, i = 1, . . . , n.

}
. (2)

The state of the game denotes the set of normal cyber nodes
that are currently working correctly in the cyber-physical
systems. Let xi be a binary variable indicating whether the
cyber node i is working correctly (i.e., xi = 1) or not (i.e.,
xi = 0). Then each state s of the game can be represented
as an n-dimensional vector, where each element represents
whether the cyber node i is working or not and has a binary
value, and the state space is represented as S.

The game repeats in discrete time slots. Assume the failure
or recover of each node in the cyber layer is independent. In
general, the operating status of a cyber node at the current time
slot depends on its previous status and the current decisions
of both the defender and the attacker. In each time slot, the
two players choose a pair of actions which may cause state
transition in a Markov manner characterized as follows. Let µ
be the successful attacking probability if the attacker attacks
a cyber node, and λ be the successful defending probability if
the defender defends a cyber node. For simplicity of presen-
tation, we assume that these events are independent. Note that
our game-theoretic framework can easily accommodate more-
complicated scenarios as long as the state transition is in a
Markov manner. An abnormal cyber node will restore to the
normal state if it has been defended successfully. Similarly, a
normal cyber node will move to the abnormal state if it has
been attacked successfully. Then for each cyber node i at each
time slot t, we have the following transition probabilities:

Pr(xti = 0|xt−1i = 1, dti, a
t
i) =


µ(1− λ) if dti = 1, ati = 1

µ if dti = 0, ati = 1

0 otherwise.

Pr(xti = 1|xt−1i = 0, dti, a
t
i) =


λ(1− µ) if dti = 1, ati = 1

λ if dti = 1, ati = 0

0 otherwise.

Moreover, we have Pr(xti = 1|xt−1i = 1, dti, a
t
i) = 1−Pr(xti =

0|xt−1i = 1, dti, a
t
i),∀ati, dti and Pr(xti = 0|xt−1i = 0, dti, a

t
i) =

1− Pr(xti = 1|xt−1i = 0, dti, a
t
i),∀ati, dti.

Each player in the game has a payoff function. In a Markov
game, a player’s stationary policy is a function that given a
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state, returns a probability distribution (i.e., a mixed strategy)
over the set of actions that the player may perform. Let
πatt := [πa(s),∀a, s] and πdef := [πd(s),∀d, s] be policies
of the attacker and the defender, respectively. Obviously, we
have

∑
a∈A πa(s) = 1, ∀s and

∑
d∈D πd(s) = 1,∀s.

The defender aims to minimize the cost of the system
by choosing the defending policy while the attacker aims to
maximize it by choosing the attacking policy. Therefore we
have a zero-sum game. Denote by Q(s, a, d) the expected
long-term system cost when the attacker takes action a ∈ A
and the defender takes action d ∈ D in state s ∈ S . In the
Markov game, the value of the attacker at state s ∈ S is

Vatt(s) = max
πatt

min
d

∑
a∈A

Q(s, a, d)πa(s). (3)

Here Q(s, a, d) can be represented as

Q(s, a, d) = c(s, a, d) + γ
∑
s′∈S

T (s, a, d, s′)Vatt(s
′), (4)

where c(s, a, d) is the immediate system cost when the attacker
takes action a and the defender takes action d in state s,
T (s, a, d, s′) is the probability of state transition from s to
s′ under the actions a and d of the attacker and defender, re-
spectively, and γ is a discount factor satisfying 0 ≤ γ < 1. The
state transition matrix T := [T (s, ·, ·, s′),∀s, s′] is calculated
based on the probabilities λ and µ as defined before.

Similarly, the value of the defender at state s ∈ S is

Vdef(s) = min
πdef

max
a

∑
d∈D

Q(s, a, d)πd(s). (5)

As our game is zero-sum, we have Vatt(s) = Vdef(s) and hence
can use V (s) to denote the value of state s without ambiguity.
Therefore, the payoff functions of the attacker and the defender
are V (s) and −V (s), respectively.

B. Impact of Cyber Attacks on Physical Domain

The immediate system cost c(s, a, d) in (4) depends on
the interdependence between the cyber layer and the physical
layer in a cyber-physical system and varies for different
applications. In this section, we adopt a model proposed in
[16] to characterize such independence. In practice, the control
law that governs the operations of the physical system relies
on the remote data collected by cyber nodes. Such remote data
is first sent via communication channels to the control center
which then computes the optimal control commands and sends
them back to the cyber nodes. After that, the cyber nodes
initiate control actions over the physical nodes. Considering
such a scenario, let B := [bij ,∀i, j] be the interdependence
matrix of the cyber-physical system, where bij ∈ [0, 1] is the
weight that captures the effect of the data sent by cyber node
i on the control action over physical node j and represents the
conditional probability that physical node j temporarily fails
given the corrupt data sent by cyber node i. It is obvious that∑n
i=1 bij = 1,∀j = 1, . . . ,m.

At each time slot t, let pi(t) be the probability that cyber
node i fails at time t, and qj(t) be the probability that physical
node j fails at time t. We have

qj(t) =
n∑
i=1

bijpi(t),∀j, t. (6)

Note that in our system pi(t) is uniquely determined by the
system state s as the cyber nodes that fails in state s have
pi = 1, and can thus be rewritten as pi(s). Similarly, qj(t)
can be rewritten as qj(s). Assume that each physical node j
is associated with a cost of failure ρj to the system cost. Then
the expected immediate system cost can be represented as

c(s, a, d) =
∑
s′∈S

T (s, a, d, s′)
m∑
j=1

ρjqj(s
′). (7)

III. SOLUTION OF THE GAME

In this section, we solve the Markov game defined before.
The solution concept we use here is Nash equilibrium (NE)
[17]. A NE solution gives the defender an idea of the attacker’s
policy and a plan for what to do in each state in the event of an
attack. It has been proved in [18] that every Markov game has
a stationary NE. Our goal is to find this stationary NE, which
gives us the optimal policies for both players at equilibrium.
Note that the optimal solutions computed individually by both
players in (3) and (5) are best responses to each other. Since
V (s) = Vatt(s) = Vdef(s) for all states s ∈ S , based on
the definition of NE, these optimal solutions are also in NE.
Therefore, we only need to solve (3) and (5) to obtain the NE
in our game.

The optimal policy π∗att of the attacker can be obtained
by solving (3), which can be reformulated as the following
optimization problem:

max
πatt(s)

V (s) (8a)

s.t. V (s) ≤
∑
a∈A

Q(s, a, d)πa(s),∀d ∈ D (8b)∑
a∈A

πa(s) = 1, (8c)

πa(s) ≥ 0,∀a ∈ A. (8d)

Similarly, the optimal policy π∗def of the defender can be
obtained from (5) as follows:

min
πdef(s)

V (s) (9a)

s.t. V (s) ≥
∑
d∈D

Q(s, a, d)πd(s),∀a ∈ A (9b)∑
d∈D

πd(s) = 1, (9c)

πd(s) ≥ 0,∀d ∈ D. (9d)

The key challenge to solve (8) and (9) is the absence of
the explicit forms for V and Q. To tackle this challenge, we
propose to use the value iteration algorithm [19] to compute
the optimal Q and V for given state s, attacker action a, and
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defense action d. The value iteration algorithm is described in
Algorithm 1. The proposed algorithm iteratively estimates the
values of V and Q, and will converge to their correct values.
Note a linear program is solved in each iteration (Line 7) to
obtain a mixed strategy of the attacker, which will converge
to the optimal one. Then we use the converged values of Q
to obtain the optimal policy of the defender (Line 13).

Algorithm 1 Value iteration algorithm to calculate NE
1: Initialization: set V 0(s)← 0,∀s ∈ S and k ← 0;
2: repeat
3: for all s ∈ S, a ∈ A, d ∈ D do
4: update Qk+1(s, a, d) according to (4) with V (s′) =

V k(s′);
5: end for
6: for all s ∈ S do
7: update V k+1(s) and πk+1

att (s) as the optimal objective
function value and solution to (8) with Q(s, a, d) =
Qk+1(s, a, d), respectively;

8: end for
9: k ← k + 1;

10: until convergence criteria is satisfied;
11: set π∗att(s) = πkatt(s),∀s ∈ S;
12: for all s ∈ S do
13: set π∗def(s) to be the optimal solution to (9) with

Q(s, a, d) = Qk(s, a, d);
14: end for

IV. EVALUATION RESULTS

In this section, as a case study, we apply the proposed
framework to the wide-area monitoring and protection in smart
grid.

A. Experimental Setting

We consider the scenario where system-wide information
sent from a collection of cyber nodes is used to generate
protective actions affecting the connectivity of the system’s
physical components to prevent the propagation of large
disturbances [20]. We use the same setting as [16]. The test
system we consider here is a 5-bus system from PJM as shown
in Fig. 2. The data related to this system is available in [21].
In the figure, there are 12 cyber nodes: c1, c2, . . . , c12. These
cyber nodes collect real-time data from their attached trans-
mission lines and send it to the supervisory control and data
acquisition (SCADA) for processing. If possible disturbances
are detected by the SCADA, some transmission lines might
be temporarily disconnected through the flexible alternating
current transmission system (FACTS) to stop the propagation
of the disturbance. Here the transmission lines p1, p2, . . . , p6
are the physical nodes. In this system, the malicious attacker
may inject false data into the cyber nodes to mislead the
SCADA to send false disconnection commands.

To characterize the independence matrix B, observe that
locally collected data often gives a better indication of the real-
time operation state of a transmission line and should have a

Fig. 2. PJM 5-bus system [16]

larger impact on the decision of disconnecting that line. Here
we use the following setting in the 5-bus PJM system:

bij =

{
0.25 if ci is locally connect to pj
0.05 otherwise.

To model the cost of loss of each physical node, we use
the increased economic dispatch cost due to the temporary
disconnection of a transmission line. Let δ0 be the minimum
dispatch cost without loss of any transmission line and δj be
the minimum dispatch cost with the loss of transmission line
j. Furthermore, denote by T the length of a time slot. Then
we have

ρj = (δ0 − δj)T. (10)

In our setting, we set T to be 1 hour. We can use MATPOWER
[22] to run seven optimal power flow to obtain the following
values for all ρj : ρ1 = $700, ρ2 = $1, 000, ρ3 = $600, ρ4 =
$1, 200, ρ5 = $800, and ρ6 = $900.

For simplicity, as with [16], we assume that the attacker
is interested in putting down a single transmission line by
compromising the two cyber nodes that have the most effect
on this line. Therefore, the action spaces for both the attacker
and the defender reduce to the set of the pairs of cyber
nodes that are connected to the same transmission line, i.e.,
(c1, c5), (c2, c10), (c3, c4), (c6, c7), (c8, c9), (c11, c12), which is
equivalent to the set of the transmission lines in the sys-
tem. Therefore, the state of the system becomes the set of
transmission lines whose pairs of cyber nodes are working
correctly. The successful attacking and defending probabilities
µ and λ for each pair of cyber nodes are set to be 1
and 0.5, respectively. The attacking and defending budgets
for each time slot are both set to be 1, meaning that the
attacker/defender can at most attack/defend one pair of cyber
nodes in a time slot.

B. Numerical Results

First, we show the player strategies in a static game that does
not consider rewards in future time periods as comparison.
This is equivalent to set γ = 0. Table I shows the payoff matrix
Q(s, a, d) of the static game for state s = [1, 1, 1, 1, 1, 1]
corresponding to the case that all cyber nodes are working
correctly. Note that the matrix represents the payoff to the
attacker, and therefore, the attacker prefers an action that
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returns a larger number while the defender prefers an action
that returns a smaller number. The rows of the table correspond
to the actions taken by the attacker and the columns of
the table correspond to the actions taken by the defender.
The optimal player strategies for the static game at this
state are πa = [0.2207, 0.1919, 0, 0.1766, 0.2102, 0.2006] and
πb = [0.0137, 0.2728, 0, 0.4110, 0.1083, 0.1943]. However, if
we consider future rewards, the payoff matrix for this state
will evolve during the iterative process and finally converge
to a composite payoff matrix. For instance, if we set γ = 0.3,
the payoff matrix at this state will finally evolve into the
matrix shown in Table II. Note that for any state s, the optimal
strategies of the players in the Markov game is the same as
the optimal strategies of the players in the static game with
the composite matrix as payoffs [17].

TABLE I
PAYOFF MATRIX Q(s, a, d) FOR A STATIC GAME WITHOUT CONSIDERING

FUTURE REWARDS UNDER STATE s = [1, 1, 1, 1, 1, 1]

400 800 800 800 800 800
920 460 920 920 920 920
760 760 380 760 760 760

1000 1000 1000 500 1000 1000
840 840 840 840 420 840
880 880 880 880 880 440

TABLE II
PAYOFF MATRIX Q(s, a, d) FOR A MARKOV GAME WITH γ = 0.3 UNDER

STATE s = [1, 1, 1, 1, 1, 1]

956.3 1475.1 1475.1 1475.1 1475.1 1475.1
1619.3 1028.4 1619.3 1619.3 1619.3 1619.3
1425.8 1425.8 931.6 1425.8 1425.8 1425.8
1690.4 1690.4 1690.4 1063.9 1690.4 1690.4
1524.4 1524.4 1524.4 1524.4 980.9 1524.4
1573.2 1573.2 1573.2 1573.2 1573.2 1005.4

Next, we show the optimal player strategies of the Markov
game in the dynamic case. Fig. 3–5 show the optimal player
strategies of the Markov game in state s = [1, 1, 1, 1, 1, 1], s =
[0, 1, 1, 1, 1, 1] and s = [1, 0, 0, 0, 0, 0] for γ = {0, 0.3, 0.6},
respectively. Obviously, the results show that the optimal
strategies of the players change a lot as the value of the penalty
factor γ varies. Specifically, the figures show that in general,
as γ increases, the attacker will progressively shift its focus
from attacking the cyber nodes on some lines to attacking
other cyber nodes, while the defender will also shift its focus
to minimize the total cost. Note that in our simulation setting,
the budgets of the attack and the defend are both 1. Therefore,
depending on the specific system status, as the attacker shift its
focus to attack the cyber nodes on a specific transmission line,
the defender may use this opportunity to restore the operation
of other damaged cyber nodes if they are more important (e.g.,
the results shown in Fig. 4) or defend against such attacks
directly if the damage of the specific line is high (e.g., the
results shown in Fig. 5) to minimize the cost.
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Fig. 3. Optimal player strategies in state s = [1, 1, 1, 1, 1, 1] of the Markov
game with different values of γ: (a) attacker strategy; (b) defender strategy.

V. CONCLUSION

In this paper, we have investigated the interactions between
the attacker and the defender in a CPS and developed a general
game-theoretic framework to analyze them. A probabilistic
interdependence model has been introduced to characterize the
impact of cyber attacks on the underlying physical system.
A Markov game has been formulated to model the CPS
security problem, considering both the continual nature of the
interaction process and the interdependence model. We have
applied our framework to study the security problem in the
wide-area monitoring and protection of smart grid. Numerical
results show the effectiveness of the derived optimal defending
strategies from our proposed approach.
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Fig. 4. Optimal player strategies in state s = [0, 1, 1, 1, 1, 1] of the Markov
game with different values of γ: (a) attacker strategy; (b) defender strategy.
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