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Abstract—To provide intelligent and personalized services on
smart devices, machine learning techniques have been widely
used to learn from data, identify patterns, and make auto-
mated decisions. Machine learning processes typically require
a large amount of representative data that are often collected
through crowdsourcing from end users. However, user data could
be sensitive in nature, and training machine learning models
on these data may expose sensitive information of users, vio-
lating their privacy. Moreover, to meet the increasing demand
of personalized services, these learned models should capture
their individual characteristics. This article proposes a privacy-
preserving approach for learning effective personalized models on
distributed user data while guaranteeing the differential privacy
of user data. Practical issues in a distributed learning system such
as user heterogeneity are considered in the proposed approach.
In addition, the convergence property and privacy guarantee of
the proposed approach are rigorously analyzed. The experimen-
tal results on realistic mobile sensing data demonstrate that the
proposed approach is robust to user heterogeneity and offers a
good tradeoff between accuracy and privacy.

Index Terms—Data privacy, distributed algorithm, machine
learning.

I. INTRODUCTION

SMART devices equipped with sensing, communications,
computing, and/or control capabilities, such as smart-

phones, wearable devices, and in-vehicle sensing devices, are
becoming extremely popular nowadays. These devices gen-
erate, collect, store, and analyze an unprecedented amount
of data as they interact with the physical world, which can
provide intelligent and personalized services to people. For
instance, smartwatches can record their users’ physical activ-
ities and mental conditions for health monitoring at any time,
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and smart insoles can track the body temperature, motion, and
heart rate of their users to help them stay injury free and run
better.

For these smart devices to provide intelligent services,
machine learning techniques need to be applied to learn power-
ful predictive models on the collected data. A common practice
to learn predictive models from these crowdsourced data is
to first collect data from all devices in a cloud server and
then train a global model. However, it may be risky to store
the privacy-sensitive data in a cloud server which may not
be fully trustworthy. Moreover, as the data volume increases,
the cost and latency of uploading all the raw data to a dis-
tant cloud server increase as well. On the other hand, a device
may choose to learn a local model on its own data without
sharing data with other devices. Such local models often per-
form poorly due to the limited training data size. Hence, how
to benefit from data sharing without violating user privacy in
learning predictive models from distributed data is a challenge.
Federated learning [1] has been proposed recently as a promis-
ing approach to solve the challenge. In federated learning, all
devices update the global model downloaded from the cloud
server with their own data and only send the updates back to
the server for aggregation. By sharing only the learned updates
rather than the raw data, federated learning both achieves
high communication efficiency and reduces privacy risks while
obtaining effective predictive models.

Although promising, there remain several issues in applying
federated learning to the real world. First, the model obtained
through federated learning is a shared model that extracts
the common knowledge of all participants without capturing
personal inclinations [2]. For instance, when learning the sen-
timent of users on their personal messages, a single global
model cannot capture such differences, since the same word
from different users may convey different sentiments due to
various personal opinions and language using habits. However,
since people with close relationships are likely to have similar
habits, it will be beneficial to allow the learning tasks of all
users to learn from each other based on their relationships.
Also known as multitask learning, this kind of method allows
personalized models to be learned, which could both bene-
fit from the collective data and keep personal characteristics.
Second, in a federated learning system with lots of partici-
pants, the device heterogeneity has a large impact on learning
efficiency. The network condition, data size, and computation
capability of different devices are different and even time vary-
ing, which may result in the delay, dropout, or poor quality
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of the updates. Third, federated learning does not provide a
rigorous privacy guarantee for participants. The aggregation
server in federated learning is assumed to be fully trusted to
coordinate the training. However, the server can easily violate
the privacy of participants by observing their updates as shown
in recent attacks [3], [4].

To address the aforementioned issues, we propose a novel
federated learning scheme that provides an effective personal-
ized model for each participant under the device heterogeneity
while guaranteeing differential privacy of their data. In our
proposed scheme, the personalized model of a participant is
learned based on not only its own local data but also the shared
updates computed from other participants’ data. We provide
differential privacy guarantee for shared updates by adding cer-
tain amounts of noise before releasing them. At the heart of our
scheme is a new iterative algorithm that solves the multitask
learning optimization problem in a distributed and privacy-
preserving way. The iterative algorithm can learn optimal
personalized models and the relationship between them simul-
taneously. Since the algorithm is an iterative process and
would consume the privacy budget at each iteration, we fur-
ther use moments accountant to characterize the end-to-end
privacy loss after multiple iterations.

In summary, the main contributions of this article are as
follows.

1) To the best of our knowledge, this is the first work
that rigorously analyzes the personalized federated learn-
ing with a differential privacy in a heterogeneous IoT
setting.

2) We propose a novel differentially private federated learn-
ing scheme for collaboratively training multiple person-
alized machine learning models from the data stored
across smart devices in IoT.

3) We perform rigorous privacy analysis considering the
heterogeneity of the IoT devices and convergence anal-
ysis for our proposed approach.

4) We conduct extensive evaluations based on real-world
data sets, verify the effectiveness of the proposed
approach, and observe the tradeoff among model accu-
racy and privacy empirically.

The remainder of this article is organized as follows. We first
describe the preliminaries in Section II and problem setting in
Section III. Then, we develop a distributed learning scheme
to achieve personalized federated learning with differential
privacy guarantee in Section IV. Next, we analyze the conver-
gence rate of the proposed solution in Section V. The privacy
analysis of the proposed solution is provided in Section VI,
and numerical results are provided in Section VII. Finally,
related literature is reviewed in Section VIII, and conclusions
are made in Section IX.

II. PRELIMINARIES

In this section, we first briefly describe the basics of
moments accountant and their properties. The basic idea of
moments accountant is to bound the privacy loss by bounding
the log moment of the privacy loss. For neighboring databases
A and A′, the randomized mechanism M, and auxiliary input

au, the privacy loss incurred by observing o is defined as

z(o;M, au,A,A′) := log

(
Pr[M(au,A) = o]

Pr[M(au,A′) = o]

)
.

Here, we take the privacy loss z(o;M, au,A,A′) as a random
variable because the mechanism M is randomized.

Accordingly, given the randomized mechanism M and
any positive integer γ , the γ th moment of the privacy
loss μM(γ ; au,A,A′) is defined as the log of the moment
generating function evaluated at γ

μM
(
γ ; au,A,A′)

:= log Eo∼M(A)

[
exp

(
γ z
(
o;M, au,A,A′))].

Then, the moments accountant is defined as the upper bound
of μM(γ ; au,A,A′) over all possible auxiliary information
au and neighboring databases A and A′ as

μM(γ ) := max
au,A,A′

μM
(
γ ; au,A,A′).

Two important properties of moments accountant are pro-
vided as follows, which will be used to compute the moments
accountant of an adaptive mechanism and convert the moments
accountant into a differential privacy guarantee.

Theorem 1 (Composability) [5]: Suppose that an adaptive
mechanism M1:k consists of a sequence of randomized mech-
anisms (M1,M2, . . . ,Mk), where Mi takes the data set A
and the output of Mi−1 as its inputs. If the moments accoun-
tant of Mi is μMi(γ ) ∀i ∈ [k], then for any positive integer
γ and any output (o1, . . . , ok−1)

μM1:k(γ ) =
k∑

i=1

μMi(γ )

where oi for i < k is the output of mechanism Mi and
μM1:k(γ ) is conditioned on these k − 1 outputs.

Theorem 2 (Tail Bound) [6]: For any ε > 0, mechanism
M is (ε, δ)-differentially private for

δ = min
γ

exp(μM(γ )− γ ε).

III. PROBLEM SETTING

We consider a federated learning system as shown in Fig. 1.
In the system, a group of smart devices (also known as, users

or participants) senses the physical world continuously and
stores the collected data in their local databases. Each device
has some embedded computing capabilities capable of training
a local model. A cloud server will coordinate the collaboration
among devices to improve their models from others’ data.

Let m denote the total number of devices in the system,
each needing to learn a personalized model. Each device t
has a local training data set At = (Xt, yt), where the ith col-
umn of the matrix Xt denotes a feature vector xi

t ∈ R
d, and

the ith element of the vector yt denotes the corresponding
label yi

t that takes continuous value for regression problems
and categorical value for classification problems. Let nt be
the total number of training samples in device t’s database,
and therefore, Xt ∈ R

d×nt . We assume that the feature vec-
tor ‖xi

t‖2 ≤ 1 which can be enforced through normalization.
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Fig. 1. Overall architecture of federated learning systems.

Denote by wt ∈ R
d the model parameters of device t and by

W := [w1, . . . , wm] ∈ R
d×m the collective model parameters

of all devices. We use n :=∑T
t=1 nt to denote the total num-

ber of all data points and represent the overall feature data
matrix as X := diag(X1, . . . , Xm) ∈ R

md×n. Then the person-
alized federated learning can be formulated as the following
multitask learning problem [7]:

min
W,�

P(W,�) :=
m∑

t=1

nt∑
i=1

�t
(
wT

t xi
t, yi

t

)+ λ tr
(

W�−1WT
)

s.t. � 	 0, tr(�) = 1 (1)

where � ∈ R
m×m is the task covariance matrix that mod-

els the relationship between different devices, λ > 0 is the
regularization parameter, and �t(·) is the convex loss func-
tion corresponding to device t’s learning task. In the above
optimization problem, the first term of the objective function
measures the empirical loss of all training samples, and the
second term measures the learning task relationship between
devices. Note that P(W,�) is jointly convex with respect to
W and � under our assumptions as proved in [8].

IV. PRIVACY-PRESERVING DISTRIBUTED FRAMEWORK

In this section, we propose a distributed framework to
solve problem (1) with a rigorous privacy guarantee. We first
describe the threat model and design goals and then propose
a privacy-preserving algorithm to solve the problem.

A. Threat Model and Design Goals

We assume the information sent through the network is
well protected during the transmission and the adversary here
can be the “honest-but-curious” central server or users in
the system. By observing the received updates, it is possible
for the server or malicious users to recover the training data
using the model inversion attack [3] or infer whether a sam-
ple is in the training data set with the membership inference
attack [4]. The goal of our design is to ensure that the server
or malicious users cannot learn much additional information
of user samples from the received messages under any auxil-
iary information and attack. We design our privacy-preserving
algorithm in the framework of differential privacy (DP) [9]. A

differentially private algorithm provides a strong guarantee that
the presence of an individual record in the data set will not sig-
nificantly change the output of the algorithm. Specifically, we
use the notion of (ε, δ)-DP, which is suitable for the iterative
algorithm due to its composability property.

In this article, we achieve (ε, δ)-DP for each user using the
Gaussian mechanism [9], which provides privacy guarantee
through adding Gaussian noise to the uploaded local update.
The size of the noise is calibrated by the update’s sensitivity
which captures how much a single individual’s data changes
the value of this update in the worst case. Given any function
f : R

|A| → R with L2-sensitivity sf , the Gaussian mechanism
on f is M(A) := f (A) + N (0, s2

f σ
2), where N (0, s2

f σ
2) is

a normal distribution with mean 0 and standard variance sf σ .
It has been proved in [9] that the Gaussian mechanism M
achieves (ε, δ)-DP if σ ≥ √2 log (1.25/δ)/ε with ε ∈ (0, 1).

B. Proposed Privacy-Preserving Scheme

Although it is hard to optimize all the unknown variables
of (1) simultaneously, (1) can be solved by an alternating
optimization procedure [8] since the objective is separable with
respect to W and �. Specifically, we alternatively update W
with fixed � and then update � with fixed W until conver-
gence. In what follows, we present the details of these two
steps.

1) Optimize � With Fixed W: When W is fixed, the cor-
responding subproblem becomes to minimize the following:

min
�

P(�) := λ tr(W�−1WT)

s.t. � 	 0, tr(�) = 1 (2)

which has an analytical solution �∗ [8], i.e.,

�∗ :=
(
WTW

)1/2

tr
((

WTW
)1/2

) . (3)

We can see that �∗ can be computed from the latest W with-
out requiring any user data, so this step can be performed
efficiently on the server.

2) Optimize W With Fixed �: When � is fixed, the
subproblem becomes

min
W

P(W) :=
m∑

t=1

nt∑
i=1

�t
(
wT

t xi
t, yi

t

)+ λ tr
(

W�−1WT
)
. (4)

Since the overall data set {At}mt=1 is distributed across devices,
a distributed and parallel algorithm without requiring expen-
sive raw data transfer is highly desirable.

Toward that goal, we use the block dual coordinate descent
considering the fact that the dual of P(W) has a better sepa-
rability property. By taking the conjugate dual of P(W), we
obtain the following dual problem:

min
α

D(α) :=
m∑

t=1

nt∑
i=1

�∗t
(−αi

t

)+ 1

4λ
‖Xα‖2

�̃
(5)

where α ∈ R
n is a column vector of all dual variables with the

(
∑t−1

τ=1 nτ + i)th element αi
t corresponding to the training sam-

ple (xi
t, yi

t), �∗t is the conjugate function of �t, i.e., �∗t (−α) =
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Algorithm 1 Privacy-Preserving Algorithm
Input: Datasets {At, t = 1, . . . , m}, aggregation parameter

ξ ∈ (0, 1], correction parameter β, inner global iteration
number K, and outer global iteration number H.

Initialize: α← 0, w← 0, and �← (1/m)I.
1: for h = 1 to H do
2: for k = 1 to K do
3: for all devices t = 1, . . . , m in parallel do
4: αt ← argminαt

Gβ
t (αt;wt,αt);

5: αt ← αt + ξαt;
6: αt ← αt + bt;
7: ut ← ξXtαt + pt;
8: return ut to the server;
9: end for

10: update w← w+ 1
2λ

�̃u in the server;
11: send the updated block wt back to device t;
12: end for

13: update � ← (WT W)
1
2

tr((WT W)
1
2 )

with the most recent W and

send the block �̃t back to device t;
14: end for

maxv{−αv−�(v)}, and �̃ := �⊗ Id×d ∈ R
md×md. We assume

that �∗t is convex and differentiable with |�∗t ′(z)| ≤ 1 for all z.
Due to the convexity of (4), we have P(W�) = D(α�), and

hence the optimal primal variables can be derived from the
optimal dual variables as

w(α) := 1

2λ
�̃Xα (6)

where w(α) ∈ R
md is a column vector formed by concate-

nating m blocks of primal variables, with the tth block vector
wt(α) being the primal variable of device t.

In the following, we develop an iterative search algorithm
to solve the dual (5). Specifically, given the current solution
α and w, we define the following subproblem for device t at
each iteration:

min
αt

Gβ
t (αt;wt,αt) :=

nt∑
i=1

�∗t
(−αi

t −αi
t

)

+ wT
t Xt�αt + β

4λ
‖Xt�αt‖2�̃t

(7)

where αt ∈ R
nt is the tth block vector of α representing the

dual variables of device t, �̃t ∈ R
d×d refers to the tth diagonal

block of �̃, and β > 0 is the correction parameter.
Note that in the traditional block dual coordinate descent,

each local update minimizes the global objective based on
all updated coordinates. However, in our approach, each local
update minimizes the local objective based on the previous
values of local coordinates, which can be executed in parallel
and decrease the training efficiency. To compensate for such
differences, the correction parameter β needs to be chosen
carefully to ensure the sum of the local objectives of all devices
approximately equal to the global objective D.

Algorithm 1 outlines our privacy-preserving scheme using
the Gaussian mechanism. Our algorithm contains two parts:
1) update W (lines 2–12) and 2) update � (line 13). In part

1), each device first solves its own local (7) and uploads its
local update ut to the server. Then the server concatenates
all ut as u and updates the global parameters W, which are
sent back to the corresponding device. In part 2), the server
updates � using the most recent W and sends the block result
�̃t to the corresponding device. This process iterates multiple
rounds until convergence. The noise vectors bt and pt in lines 6
and 7 are drawn independently from the Gaussian distributions
N (0, s2

1σ
2
1 ) and N (0, s2

2σ
2
2 ) and used to achieve (ε1, δ1)-DP

and (ε2.δ2)-DP, respectively. Here, s1 and s2 represent the L2-
sensitivity of αt and ut, respectively. Note that H is the
number of outer global iterations and K is the number of inner
global iterations, which should be determined beforehand.

In this article, we consider a heterogeneous setting where
devices have different network conditions, computation capa-
bilities, and battery capacities. As described in Algorithm 1,
devices need to compute and share their local updates for many
iterations. During this process, devices may drop out if they
run out of their resources (e.g., running out of power or get-
ting disconnected from the network), which is named as node
dropping. In this case, dropped devices are unable to share
their computation results to the server. Here, we assume that
a device will not always drop out, which means the device will
recover and rejoin the training process if it was dropped out
before. Besides, at each global iteration (either inner or outer
global iteration), devices perform multiple local iterations in
a given time period before sending their computation results
to the server. However, as devices have different computation
capabilities, they will perform different numbers of local iter-
ations. We name this phenomenon as device variability. In the
following, we provide a rigorous analysis of the convergence
rate and the privacy loss of our algorithm, considering the
node dropping and device variability.

V. CONVERGENCE ANALYSIS

In this section, we analyze the convergence properties of our
proposed Algorithm 1. Since (1) is jointly convex with respect
to W and �, the alternating optimization is guaranteed to con-
verge to the optimal solution. As it is easy to optimize � given
W, we focus on analyzing the convergence of updating W in
the rest of this section. Following the discussion of device het-
erogeneity, we first introduce an approximation parameter to
quantify the quality of each update.

Definition 1 (Quality of Update): At each iteration k, we
define the quality measurement of the solution calculated by
device t to its subproblem as

θk
t =

Gβ
t
(
αk

t ;wk
t ,α

k
t

)− Gβ
t
(
α�

t ;wk
t ,α

k
t

)
Gβ

t
(
0;wk

t ,α
k
t
)− Gβ

t
(
α�

t ;wk
t ,α

k
t
) (8)

where θk
t ∈ [0, 1] and α�

t is the exact minimizer of
Gβ

t (αk
t ;wk

t ,α
k
t ). θk

t = 0 refers that the update is the exact
solution, and θk

t = 1 indicates that the update of model t makes
no progress at iteration k.

According to Definition 1, if a device drops out at iteration
k, then θk

t = 1, otherwise θk
t ∈ [0, 1). Since a device will not

always drop out, we have the probability of node dropping
for any device P(θk

t = 1) < pmax with 0 ≤ pmax < 1. In
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addition, due to the device variability, at iteration k, the local
updates of devices will have different qualities. Generally, if a
device has the computation capability to perform more local
iterations, it will achieve higher quality of update. Here, in
Assumption 1, we assume that the update of each device at
each iteration will be more accurate than the previous one
on average, which is a customary assumption for gradient
descent-based algorithms [7].

Assumption 1: Let Ik = (αk,αk−1, . . . ,α1) be a vector of
the previous dual variables until iteration k and the expectation
of θk

t under the previous values be �k
t = E(θk

t |Ik). We assume
that E(θk

t |Ik, θ
k
t < 1) ≤ �max with 0 ≤ �max < 1.

Based on Assumption 1, we derive Theorems 3 and 4 which
characterize the convergence of our privacy-preserving algo-
rithm with respect to smooth and nonsmooth loss functions,
respectively. Before that, we first introduce some lemmas used
for both smooth and nonsmooth cases.

To make the local dual objective approximate to the global
dual objective with respect to varying αt, we choose β as
follows.

Lemma 1: For any dual variable α ∈ R
n and the change of

it α = (α1, . . . , αm)T , aggregation parameter ξ ∈ (0, 1]
and correction parameter β, when

β ≥ ξ max
α∈Rn

‖Xα‖2
�̃∑m

t=1 ‖Xtαt‖2�̃t

(9)

it holds that

D(α + ξα) ≤ (1− ξ)D(α)+ ξ

m∑
t=1

Gβ
t (αt;wt,αt).

Proof: The proof is similar to the proof of
[10, Lemma 3].

Here, we choose β = ξm to ensure that the inequality (9)
is always satisfied [10]. Next, we show that the expected
objective gap is bounded in Lemmas 2 and 3.

Lemma 2: For the loss function �t with its conjugate func-
tion �∗ is convex and |�∗t ′| ≤ 1 and any s ∈ (0, 1]

E

[
D
(
αk
)
−D

(
αk + ξ

m∑
t=1

αk
t

)
|Ik

]

≥ ξ
(
1−�

)(
sG
(
αk
)
+

m∑
t=1

Jt

)
(10)

with⎧⎪⎨
⎪⎩

G
(
αk
)

:=∑m
t=1

∑nt
i=1 �∗t

(−αi
t

)+ �t
(
wt(α)Txi

t, yi
t

)
+ wt(α)Txi

tα
i
t

Jt := μ(1−s)s
2

∥∥ut − αk
t

∥∥2 − βs2

4λ

∥∥Xt
(
ut − αk

t

)∥∥2
�̃t

where ut = ∂�t(wT
t xi

t, yi
t) and � = pmax + (1− pmax)�max.

Proof: The proof is given in Appendix E.
Lemma 3: For the loss function �t with its conjugate func-

tion �∗ is convex and |�∗t ′| ≤ 1 and any s ∈ (0, 1]

E

[
D
(
αk
)
−D

(
αk+1

)
|Ik

]
≥ (1− ξ)ξ

(
1−�

)
sG
(
αk
)
+ R

(11)

with

R :=
{

0, if �t is (1/μ)− smooth
− (1−ξ)

λ
ξ
(
1−�

)
s2L2β

∑
n2

t , if �t is L− Lipschitz.

Here, G(αk) = D(αk) − (−P(W(αk))) and � = pmax + (1 −
pmax)�max.

Proof: The proof is given in Appendix F.

A. Convergence Rate of Smooth Cases

Based on the above lemmas, we obtain the convergence rate
of our privacy-preserving algorithm for smooth loss functions
in Theorem 3.

Theorem 3 (Convergence Rate for Smooth Losses): Assume
the loss function �t is (1/μ)-smooth such that �∗t is μ-strongly
convex and |�∗t ′(z)| ≤ 1 for all z. Under Assumption 1, there
exists a constant s ∈ (0, 1) such that

K ≥ 1

(1− ξ)ξ
(
1−�

)
s

log

(
n

εG

)
(12)

will satisfy that E[D(αK)− D(α∗) ≤ εG. Here, � := pmax +
(1− pmax)�max.

Proof: We first define the duality gap as G(α) = D(α)−
(−P(W(α))), and for each (7), we choose the correction
parameter β and the aggregation parameter ξ according to
Lemma 1. To prove Theorems 3 and 4, we first show that
E[D(αk)−D(αk+1)|Ik] has a lower bound in Lemma 3 since

E

[
D
(
αk+1

)
−D(α∗)|Ik

]
= D

(
αk
)
−D(α∗)

− E

[
D
(
αk
)
−D

(
αk+1

)
|Ik

]
.

(13)

Now, we derive the upper bound of E[D(αk+1)−D(α∗)|Ik]
based on the above theorems and (13). The following proof is
similar to the proof of [7, Th. 1]. Since

E

[
D
(
αk+1

)
−D(α∗)|Ik

]

≤ D
(
αk
)
−D(α∗)− (1− ξ)ξ

(
1−�

)
sG
(
αk
)
− R

≤ (1− (1− ξ)ξ(1−�)s
)(D(αk

)
−D(α∗))− R (14)

by recursively applying the above inequality, we arrive at

E

[
D
(
αk+1

)
−D(α∗)|Ik

]

≤ − R

(1− ξ)ξ
(
1−�

)
s

+ ((1− (1− ξ)ξ(1−�)s
))k+1

(
D
(
α0
)
−D(α∗)). (15)

If the loss function �t is (1/μ)-smooth, R = 0 by Lemma 3.
Therefore, if we denote by εk

G = D(αk)−D(α∗) we have that

E

[
εk

G|Ik

]
≤ ((1− (1− ξ)ξ(1−�)s

))k
ε0

G

≤ n exp−k(1− ξ)ξ(1−�)s. (16)

Here, we have (D(α0) − D(α∗)) ≤ n by [11, Lemma 10].
Then, the right-hand side will be smaller than some εG if

k ≥ 1

(1− ξ)ξ
(
1−�

)
s

log

(
n

εG

)
. (17)

This concludes our proof.
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B. Convergence Rate of Nonsmooth Cases

Here, we derive the convergence rate of our privacy-
preserving algorithm for nonsmooth loss functions in
Theorem 4.

Theorem 4 (Convergence Rate for Nonsmooth Losses):
Assume the loss function �t is L-Lipschitz. Under
Assumption 1, when

K ≥ K0 +
⌈

1

(1− ξ)(1−�)
max

(
1,

2mL2∑ n2
t

λn2εG

)⌉

K0 ≥ k0 +
⌈

2

(1− ξ)(1−�)

(
4mL2∑ n2

t

λn2εG
− 1

)⌉

k0 ≥ max

(
0,

⌈
(1− ξ)

(
1−�

)
log

(D(α0
)−D(α∗)

)
mL2

∑
n2

t /2λn2

⌉)

it holds that E(D(α)−D(α∗)) ≤ εG at the averaged iterate α =
(1/K − K0)

∑K
k=K0+1 αk. Here, � := pmax + (1− pmax)�max.

Proof: The proof of Theorem 4 is similar to the proof
of Theorem 3. According to Lemmas 2 and 3, when the
loss function �t is L-Lipschitz, we follow the derivation of
Theorem 9 in [11] and finally obtain that when:

K ≥ K0 +
⌈

2L2β
∑

n2
t

λξ(1− ξ)
(
1−�

)
n2εG

⌉

K0 ≥ k0 +
⌈

2

(1− ξ)ξ
(
1−�

)
(

4L2β
∑

n2
t

λn2εG
− 1

)⌉

k0 ≥ max

(
0,

⌈
(1− ξ)ξ

(
1−�

)
log

(D(α0
)−D(α∗)

)
2L2β

∑
n2

t /λn2

⌉)

it holds that E(D(α) − D(α∗)) ≤ εD at the averaged iterate
α = (1/K − K0)

∑K
k=K0+1 αk. Then, Theorem 4 follows by

plugging in parameters β ≥ mξ .

VI. PRIVACY ANALYSIS

In this section, we rigorously analyze the end-to-end privacy
guarantee of our personalized federated learning scheme. For a
mechanism that achieves (ε, δ)-DP, the corresponding privacy
loss will be bounded by ε with probability at least 1− δ. The
composability property of differential privacy enables us to
account the privacy loss for each access to the training data and
accumulate this cost for the whole training process. Recently,
some advanced composition theorems [6], [9], [12]–[14] have
been proposed to achieve tighter analysis of the privacy loss
for multiple iterations.

Assume that each iteration of Algorithm 1 is (ε, δ)-
differentially private. When using the composability property,
Algorithm 1 is (Kε, Kδ)-differential private after K iterations.
However, by the strong composition theorem presented in [12]
and [13], Algorithm 1 will be (ε

√
K log 1/δ, Kδ)-differential

private, and this bound can be further tightened by combin-
ing with the privacy amplification theorem proposed in [14]
which makes the composed mechanism to be (O(qε), O(qδ))-
differentially private if the training data at each iteration is a
random sample from the data set with sampling probability q.
Recently, a stronger method known as moments accountant
has been proposed in [6], which saves a

√
log 1/δ factor of

the ε part and Kq factor of the δ part. In the following, we
analyze the privacy loss of our algorithm using the moments
accountant.

The application of moments accountant to our proposed
scheme is not straightforward. Due to the device variability,
some devices will run more local iterations (where data are
randomly sampled to perform updating at each local iteration)
so that more data are accessed at a global iteration, and thus
more privacy is leaked. Besides, due to the node dropping,
dropped devices are unable to upload their computation results
to the server at a certain global iteration and thus no privacy
loss occurred at that global iteration. In order to count the over-
all privacy loss, we let q denote the data sampling probability
at each global iteration, which captures the sampling probabil-
ity of data after multiple local iterations for each device. Then,
we let p denote the node active probability which is equal to
1− P(θk

t = 1), where P(θk
t = 1) represents the probability of

node dropping. We first account the privacy loss incurred at
each global iteration. Before that, we analyze the L2-sensitivity
of αt and ut that calibrate the size of Gaussian noises
added to them. To calculate the sensitivities, we first show
that the local objective is strongly convex.

Corollary 1: If �∗ is convex and differentiable with
|�∗′(z)| ≤ 1 for all z, then function argminαt

Gβ
t (αt,A)

is (βnt/2λ)-strongly convex.
Proof: The proof is given in Appendix A.

Based on Corollary 1, we can estimate the L2-sensitivity of
αt and ut, whose values are given in Corollaries 2 and 3,
respectively.

Corollary 2: If �∗ is convex and differentiable
with |�∗′(z)| ≤ 1 for all z, the L2-sensitivity of
argminαt

Gβ
t (αt;wt,αt) is at most (1/βnt)(8λ+ β).

Proof: The proof is given in Appendix B.
Corollary 3: When αt is known, the L2-sensitivity of ut

is at most 2ξ‖αt‖2.
Proof: The proof is given in Appendix C.

Next, using the results in Corollaries 2 and 3, we account the
privacy loss incurred at each global iteration in Lemma 4. First,
we obtain the moments accountant of each global iteration of
Algorithm 1, as given in Corollary 4.

Corollary 4: If σ1 ≥ 1 and the data sampling probability
q < (1/16σ1). Then, for any integer γ ∈ (0, σ 2

1 ln(1/qσ1)),
each global iteration of Algorithm 1 satisfies

μM1:2(γ ) ≤ γ (γ + 1)

2σ 2
2

+ q2γ (γ + 1)

(1− q)σ 2
1

+ O
(

q3γ 3/σ 3
1

)
.

Proof: The proof is given in Appendix D.
Lemma 4 (Per-Iteration Privacy Loss): Assume s1 and s2

are the sensitivity of αt and ut, respectively, δ1 = δ2 = δ ∈
(0, 1), and ε1, ε2 ∈ (0, 1). Given the data sampling probability

q, Algorithm 1 is (

√
q2ε2

1 + ε2
2 , δ)-DP for device t at each

global iteration if

σ1 ≥
√

2 ln 1.25
δ

ε1
, σ2 ≥

√
2 ln 1.25

δ

ε2
.

Proof: We compute the moments accountant of each
iteration of our algorithm according to the definitions and
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then obtain the moments accountant for the whole algorithm
by Theorem 1. Finally, we can derive the privacy guarantee
of our algorithm by converting the moments accountant to a
(ε, δ)-differentially privacy guarantee according to Theorem 2.

By Corollary 4, we have the moments accountant of
iteration k that is μMk(γ ) ≤ [(q2γ 2)/(σ 2

1 )] + (γ 2/σ 2
2 ). By

Theorem 2, we can convert μMk(γ ) into the differentially pri-
vacy guarantee of each global iteration of our algorithm. Then,
we have the following optimization problem to be solved:

log δ = min
γ

(
q2γ 2/σ 2

1 + γ 2/σ 2
2 − γ ε

)

subject to γ ≤ σ 2
1 log

(
1

qσ1

)
, γ ∈ Z

+

q ≤ 1

16σ1
, σ1 ≥ 1.

Given fixed σ1 and σ2 and δ, if we could find some values of
ε > 0, c0 ∈ (0, 1) and a positive integer γ so that(

q2

σ 2
1

+ 1

σ 2
2

)
γ 2 ≤ c0γ ε and log δ ≥ (c0 − 1)γ ε

each iteration of Algorithm 1 can be (ε, δ)-differentially
private. The above two inequalities are equivalent to

log 1/δ

ε(1− c0)
≤ c0ε

q2

σ 2
1
+ 1

σ 2
2

.

We can see that the positive integer γ exists if
([ log(1/δ)]/[ε(1− c0)]) ≤ ([c0ε]/[q2/σ 2

1 + 1/σ 2
2 ]), which is

equivalent to the following condition:

ε2 ≥ log(1/δ)
(
q2/σ 2

1 + 1/σ 2
2

)
c0(1− c0)

.

It is easy to verify that there exists a constant c1 such that

ε2 = c1 log(1/δ)
(

q2/σ 2
1 + 1/σ 2

2

)
.

Corollary 4 follows by plugging σ1 = √2 ln (1.25/δ)/ε1 and
σ2 = √2 ln (1.25/δ)/ε2 into the above equality.

Now, we account the privacy loss of the whole algorithm
given the node active probability p. We give the conclusion in
Theorem 5 in terms of a privacy guarantee for Algorithm 1,
which helps us to allocate the Gaussian noise directly.

Theorem 5 (End-to-End Privacy Loss): There exist con-
stants c1 and c2 so that given the node active probability p
and the number of global iteration K, for any ε < c1p2K,
Algorithm 1 is (ε, δ)-differential private for any δ > 0 if we
choose

σ1 ≥ c2

p
√(

q2 + r2
)
K log (1/δ)

ε

σ2 ≥ c2

p
√(

q2 + r2
)
K log (1/δ)

rε
where the parameter r refers to the ratio of privacy budgets at
steps 6 and 7, i.e., ε2 = rε1 with r ≥ 0.

Proof: Assume each iteration of Algorithm 1 is (ε, δ)-
differentially private, and the iteration number is K. Given
the node active probability p, we have that Algorithm 1 is

(εp
√

K, δ)-differentially private using the moments accoun-
tant. Then, the result follows by an application of Lemma 4
with ε2 being represented by ε2 = rε1.

VII. EVALUATION

In this section, we evaluate our approach against device
heterogeneity and different privacy budgets. We first show
the convergence properties of our approach and then study
the impact of device heterogeneity and the tradeoff between
accuracy and privacy.

A. Experimental Setting

We evaluate our approach on the Human Activity
Recognition Using Smartphones Data Set (HAR data set) [15].
It is collected by monitoring six different activities (walking,
walking upstairs, walking downstairs, sitting, standing, and
laying) of 30 individuals, using the accelerometer and gyro-
scope embedded in the mobile phone. The data set includes
10 299 instances in total with 561 features, and 210–306
instances per individual. All data are normalized locally by l2-
normalization. We train models for each individual and predict
between sitting and other activities using 75% of the data for
training and 25% for testing.

We use the hinge loss �(u) = max(0, 1 − yu) as the loss
function. It is L-Lipschitz, and its dual is �∗(−α) = −αy
with αy ∈ [0, 1]. We use the stochastic dual coordinate ascent
(SDCA) as the local solver which selects one coordinate to
update randomly at each iteration [16]. Since SDCA sam-
ples the data point with probability 1/nt at each iteration,
the data sampling probability q is niter/nt, where niter is the
local iteration number of device t. The node active probability
p = 1 − P(θk

t = 1), where P(θk
t = 1) is the probability of

node dropping of device t at global iteration k.
We evaluate our approach in both homogeneous and hetero-

geneous scenarios. In the homogeneous scenario, the server
waits for all devices to upload their updates at each time, and
no device will drop out during the process. In the heteroge-
neous scenario, all devices have to upload their updates in a
fixed global clock cycle at each time, and each device will
drop out with a certain probability P(θk

t = 1). We simulate
the device variability via varying the local iteration numbers of
each device. We use τ ∈ [0, 1] to measure the device variabil-
ity level. The local iteration numbers of devices are uniformly
distributed between (1 − τ)nmin and nmin, where nmin is the
minimum number of local data points across devices. Besides,
in each scenario, we compare our approach with the baseline
approach, i.e., the nonprivate personalized federated learning
scheme, where no noise is added to the updates.

For each experiment, the number of inner global iterations
K is set as 2000 and the number of outer global iterations
H is set as 10. Besides, we use a fivefold cross-validation to
choose the best hyperparameters λ and γ . We train and test
all models for ten times and report the average results.

B. Numerical Results

1) Convergence Properties of Our Approach: We evalu-
ate the convergence properties of our approach in both the
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(a) (b) (c)

Fig. 2. Convergence properties of our approach: (a) homogeneous setting; (b) heterogeneous setting with device variability (τ = 0.5); and (c) heterogeneous
setting with device variability (τ = 0.5) and node dropping [P(θk

t = 1) = 0.2].

Fig. 3. Impact of device variability.

homogeneous and heterogeneous scenarios considering device
variability and node dropping. In our approach, we achieve
(ε, δ)-differential privacy for each user using Algorithm 1.
Specifically, we set ε = 8 and δ = 10−3 and calculate the
privacy budget of each global iteration ε for each experiment.

We first compare the learning progress of our approach with
the baseline approach (i.e., the nonprivate personalized feder-
ated learning scheme) under homogeneous and heterogeneous
scenarios as shown in Fig. 2. Specifically, Fig. 2(a) shows the
change of the primal objective value with respect to the overall
running time (which is proportional to the iteration number) in
the homogeneous scenario. We can observe that our approach
will converge quickly. However, due to the addition of random
noise at each iteration in our approach, it will only converge
to a suboptimal value compared with the nonprivate approach,
which matches the intuition that differential privacy guarantee
comes with a utility loss. Similar results are observed under the
heterogeneous scenarios, which are shown in Fig. 2(b) (with
device variability) and Fig. 2(c) (with both device variability
and dropping).

2) Impact of Device Heterogeneity: In this set of experi-
ments, we evaluate the test error rate of the learned models
in our approach under different device heterogeneity settings.
We first study the impact of device variability by measuring
the test error rate with respect to different variability levels of
devices τ as shown in Fig. 3. As we can observe from the

Fig. 4. Impact of the drop out of devices during the training.

figure, our approach is robust to the device variability and the
error rate of the learned model is almost stable even when the
variability level increases. In comparison, the nonprivate base-
line approach will be affected more by the device variability.
The reason is that in our approach, the randomness introduced
by the device variability reduces the size of noises and thus
eliminates the impact of privacy on the accuracy.

Then, we study the impact of node dropping by assigning
the probability P(θk

t = 1) to be a random number within [0, 1]
as shown in Fig. 4. The results show that the error rate of the
learned models in our approach first decreases to 0.097 when
P(θk

t = 1) = 0.2 and then increases as more nodes start to
drop out. In our approach, the randomness introduced by the
node dropping reduces the size of noises which means the
test error rate will decrease. According to the test error rate
of the baseline approach, the test error rate increases as the
probability of node dropping increases. Thus, there exists an
optimal point, i.e., when P(θk

t = 1) = 0.2, which generates the
minimum test error rate. We can see that node dropping does
not always make things worse but brings us benefits some-
times. Therefore, sometimes extra dropping of updates will be
needed in order to achieve better accuracy of models while
preserving the privacy.

3) Tradeoff Between Accuracy and Privacy: In the last set
of experiments, we measure the error rate of learned models
corresponding to different privacy budgets, and in each case,
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Fig. 5. Tradeoff between accuracy and privacy.

we set τ = 1 and P(θk
1 = 1) as the optimal probability that

minimizes the error rate. Here, the privacy budget ε indicates
the overall end-to-end privacy loss for one user and smaller ε

implies higher privacy. As shown in Fig. 5, by increasing the
value of ε from 0.01 to 100 with δ = 10−3, the corresponding
test error rate keeps decreasing, matching the intuition that
higher privacy corresponds to lower utility.

VIII. RELATED WORK

Federated learning uses multiple devices to collaboratively
train a shared model in an iterative manner while keeping
all the data on devices. Specifically, all devices update a
model downloaded from a central server independently using
their own data and then upload the updates to the server
to improve the shared model. Most of the work in feder-
ated learning has focused on the consensus problems [1],
[2], [17]–[22] which are aimed to learn one global model
distributedly. In contrast, we tackle the case where multiple
personalized models are trained collaboratively based on rela-
tionships among all participants, which is known as multitask
learning.

Multitask learning can be generally categorized into two cat-
egories based on how they capture relationships amongst tasks.
The first category (e.g., [7], [8], [23], and [24]) assumes that
the relationships are not known beforehand and can be learned
from the data sets of tasks. On the other hand, the second cat-
egory (e.g., [25] and [26]) assumes that a clustered, sparse,
or low-rank structure between the tasks is known as a pri-
ori. In this article, we focus on the first category, which is
more general and the relationships amongst tasks may not be
known beforehand in practice. Moreover, different from the
traditional multitask learning approaches where all learning
tasks are performed on a single machine, we consider a fed-
erated learning setting where learning tasks are performed on
different edge devices and a cloud server will coordinate the
learning process. Since devices are heterogeneous in practice,
the training process becomes much more complex and chal-
lenging. Besides, some works recently studied the problem of
collaborative learning of personalized models, however, they
did not address any privacy issue [7], [24], [27]. Although
some private and personalized learning scheme with a fully

decentralized architecture like [28] has been proposed, the
architecture with central servers will be more efficient espe-
cially for applications that are large scale and require high
system agility. Moreover, they did not consider the device
heterogeneity in the real world.

For a distributed system coordinated by a central server,
the privacy issue arises when an honest-but-curious server or
device has access to the data or models. There exist several
kinds of attacks in addition to the direct access of raw data:
reconstruction attacks which recover training data from learned
knowledge [3], model inversion attacks which create an adver-
sarial example that resemble those used to create the model
based on the responses received from that model [29], and
membership inference attacks which determine if the sam-
ple was a member of the training set through querying the
model [4].

Differential privacy [9] is especially effective in preventing
membership inference attacks and reconstruction attacks. The
differentially private approaches in machine learning can be
categorized according to the object it perturbs: one is to
directly add noises to the training data [30], another is to
add noises to the output of training at each iteration or at
the end [6]. But many of these approaches are not designed
for a distributed system where data are stored on local devices.
Therefore, these privacy guarantees are achieved for the whole
data set without including the personalized privacy concern.
In this article, we make our distributed personalized learning
process to be differentially private by perturbing the output
of training at each iteration and achieve personalized differ-
ential privacy for each user under the consideration of device
heterogeneity in the real world.

IX. CONCLUSION

In this article, we have studied the problem of learning
multiple personalized classifiers collaboratively in a privacy-
preserving manner. We have considered privacy in the (ε, δ)-
differential privacy model and provided a privacy-preserving
algorithm for the personalized federated learning. We bounded
the privacy loss by exploiting the existing system uncertainty
caused by the device heterogeneity. The proposed approach is
robust to device heterogeneity and the perturbation of noises.
We have evaluated our approach on real mobile sensing data,
showing the impact of device heterogeneity and the tradeoff
between privacy and accuracy.
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